habisdibagi 30 adalah :::. Solusi: 8 Misalkan N= (2n)! (n!)2. Perhatikan bahwa jika 2n<15 maka faktor 5 di pembilang = n4 5n3 + 5n2 + 4n+ 10 = (n2 + n+ 1)((n 3)2 + 1) Untuk n= 3 diperoleh H(3) = (9+3+1)1 = 13 bilangan prima. Untuk n6= 3, n2 +n+1 2 dan (n3 + 1)(n 3)2 + 1 2, akibatnya H(n) pasti komposit. 4.
4n2 (n + 1), maka tentukan U 4 . 5. Nomor rumah pada salah satu sisi Jalan Makmur di Perumahan Asri dimulai dari nomor 143, 145, 147 dan seterusnya. Tentukan jumlah semua bilangan-bilangan bulat antara 100 dan 300 yang habis dibagi 5 tetapi tidak habis dibagi 7! 7. Menjatuhkan Bola,
Terdiridari dua angka yang habis dibagi 3 b. terdiri dua angka yang habis dibagi 2 tetapi tidak habis dibagi 3 12. Tentukan nilai k jika diketahui : a. 1 + 2 + 3 + .. + k = 120 b. 5 + 7 + 9 + .. + k = 192 13. Carilah suku ke-12 jika diketahui rumus jumlah n suku dari barisan Aritmetika ( Sn) adalah : a. 6n2 + 4n b. 2n2 7n 14. Suatu deret
Fast Money. Jawaban4n - 1 tidak habis dibagi oleh 3Penjelasan dengan langkah-langkah4n - 1 = 3n + n-1artinya 4n - 1 tidak habis dibagi oleh 3, hanya n trtentu saja.
MatematikaALJABAR Kelas 11 SMAInduksi MatematikaPrinsip Induksi MatematikaDiketahui Sn adalah sifat "4^n-1 habis dibagi 3". Andaikan Sn benar untuk n=k, maka 4^k-1 habis dibagi 3. Untuk n=k+1, maka ....Prinsip Induksi MatematikaInduksi MatematikaALJABARMatematikaRekomendasi video solusi lainnya0218Buktikan 2+4+6+...+2n=nn+1, untuk setiap n bilangan n=1 4 2n+3=. . . .02081+2+4+8+. 2^n-1= 2^n -1 untuk setiap bilangan asli n0337Dengan induksi matematika, buktikan Pn = 1^2 +2^2 +3^2...Teks videoUntuk menyelesaikan soal ini kita tahu bahwa SN yang kita miliki adalah 4 pangkat n dikurangi 1 itu akan habis dibagi 3. Selanjutnya kita juga tahu bahwa Andaikan SN benar untuk n = k maka 4 pangkat x dikurangi 1 itu akan habis dibagi 3 yang saling memberi tahu seperti itu maka untuk Nilai N sama dengan Kak seperti apa tadi kita sudah tahu nilai SN itu sebenarnya rumusnya adalah 4 pangkat n dikurangi 1 Karena sekarang n = x + 1 maka kita tulis Jika n = x + 1 maka kita akan mendapatkan nilai kita ganti dengan K + 1 sehingga kita dapat 4 PlusDikurangi 1 nilai ini boleh kita tulis tidak tahu juga ada sifat eksponensial yang bentuknya seperti ini. Jika kita punya a pangkat b c itu nilainya sama saja dengan a pangkat b dikali a pangkat C sehingga untuk menyelesaikan bentuk 4 ^ k + 1 kita boleh tulis 4 pangkat Kak dikali dengan 4 pangkat 1 dikurangi 1 sehingga bentuk ini sama saja jika kita tulis 4 dikali 4 pangkat x dikurangi 1 sehingga jika kita lihat pada pilihan ganda kita akan mendapatkan jawaban yang tepat adalah B sampai jumpa di video pembahasan yang selanjutnya
Mari kita membuktikan menggunakan induksi matematika! D Soal Buktikan dengan induksi matematika bahwa $n^3 - n$ habis dibagi $3$ untuk setiap bilangan asli $n$. Pembahasan Ingat ya yang dimaksud dengan bilangan asli itu disimbolkan dengan $\mathbb{N}$ adalah $1,2,3,4,5$,.., dst. Untuk membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk setiap bilangan asli $n$ dengan metode induksi matematika, kita harus melakukan 3 langkah berikut. Langkah Pembuktian ke-1 Buktikan Berlaku untuk $n = 1$. Pada langkah ini, kita harus membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n= 1$. Caranya? Ya, substitusikan saja $n=1$ ke $n^3-n$. Kita akan memperoleh $\begin{split} n^3 - n &= 1^3 - 1 \\ &= 1 - 1 \\ &= 0 \end{split}$ Jelas sekali ya bahwa $0$ itu kan habis dibagi dengan $3$. Jadi, pada langkah ke-1 ini kita sudah berhasil membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n= 1$. Mari kita berbahagia sebentar. Hahaha. D Untuk membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n=2,3,4,5,6...$ dst ya... silakan simak kelanjutan pembuktian di bawah! D Langkah Pembuktian ke-2 Diasumsikan Berlaku untuk suatu $n = p$. Pada langkah ini, kita mengasumsikan bahwa $n^3 - n$ habis dibagi $3$ untuk suatu bilangan asli $n$ yang bernilai $p$. Dengan kata lain, terdapat suatu bilangan asli $p$, sedemikian sehingga $p^3 - p$ habis dibagi $3$. Ingat ya! Ini baru asumsi lho! Asumsi itu adalah sesuatu yang diyakini kebenarannya, tapi belum terbukti benar. Intermeso Selingan Proses Pembuktian Progress kita sejauh ini Kita berhasil membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk nilai $n = 1$. Kita mengasumsikan bahwa $n^3 - n$ habis dibagi $3$ untuk suatu nilai $n=p$. Pada intemeso alias selingan proses pembuktian ini, kita akan mengulik sedikit perihal bentuk $n^3 -n$. Perhatikan bahwa $n^3-n$ itu kan bisa difaktorkan. Ya toh? D Nah, jika $n^3 -n$ difaktorkan, akan diperoleh $n^3 - n = n-1\cdotn\cdotn+1$ Perhatikan bahwa untuk sebarang bilangan asli $n$, akan berlaku $n \neq n-1$. Ya toh? Untuk sebarang bilangan asli $n$, kita juga dapat menyatakan bahwa $n \neq n+1$. Ya toh? Jadi, kita dapat menyimpulkan bahwa $n$, $n-1$, dan $n+1$ adalah $3$ bilangan asli yang berbeda. Ya tidak? D Dari sifat-sifat di atas, kita dapat menyatakan suatu sifat baru ini. Jika bilangan $n$, $n-1$, dan $n+1$ kita kalikan, kemudian terdapat suatu bilangan asli $x$ yang membagi habis hasil perkalian $3$ bilangan tersebut, maka salah satu dari $n$, $n-1$, atau $n+1$ pastilah kelipatan $x$. Kita akan menggunakan sifat di atas pada Langkah Pembuktian ke-3. Intermeso selesai sampai di sini. Mari, sekarang kita kembali ke langkah utama pembuktian. Langkah Pembuktian ke-3 Buktikan Berlaku untuk $n = p + 1$. Pada langkah ini, kita harus membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n = p + 1$. Sebelumnya, ingat bahwa pada bagian Intermeso, kita dapat memfaktorkan $n^3 - n$ menjadi $n-1\cdotn\cdotn+1$. Dengan demikian, dengan mensubstitusikan $n=p+1$ ke $n-1\cdotn\cdotn+1$, kita akan memperoleh $\begin{split} n^3 - n &=n-1\cdotn\cdotn+1 \\ &= p+1 - 1\cdotp+1\cdotp+1+1\\ &= p\cdotp+1\cdotp+2 \\ \end{split}$ Jadi, membuktikan bahwa $n^3 - n$ habis dibagi $3$ untuk $n = p + 1$ ekuivalen dengan membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi $3$. *** Selanjutnya, bagaimanakah cara membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi $3$? Ingat! Pada Langkah Pembuktian ke-2, kita mengasumsikan bahwa $p^3 - p$ habis dibagi $3$. Karena $p^3 - p$ dapat difaktorkan menjadi $p-1\cdotp\cdotp+1$, maka asumsi bahwa $p^3 - p$ habis dibagi $3$ akan ekuivalen dengan asumsi bahwa $p-1\cdotp\cdotp+1$ habis dibagi $3$. Perhatikan bahwa $p$, $p-1$, dan $p+1$ adalah tiga bilangan asli yang berbeda. Oleh sebab itu, karena asumsi $p-1\cdotp\cdotp+1$ habis dibagi $3$, menurut sifat di dalam kotak biru di bagian Intermeso, kita dapat menyimpulkan bahwa Salah satu dari $p$, $p-1$, atau $p+1$ adalah kelipatan $3$. Bisa jadi, $p$ adalah kelipatan $3$. Bisa jadi, $p-1$ adalah kelipatan $3$. Bisa jadi, $p+1$ adalah kelipatan $3$. Pokoknya, salah satu dari $p$, $p-1$, atau $p+1$ adalah kelipatan $3$. Mari kita cermati tiga kemungkinan tersebut satu per satu. *** Kemungkinan Pertama $p$ adalah kelipatan $3$. Pada kemungkinan ini, $p$ adalah bilangan asli kelipatan $3$. Ingat! Misi utama kita pada Langkah Pembuktian ke-3 ini adalah membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi dengan $3$. Perhatikan! Karena $p$ adalah salah satu faktor dari $p\cdotp+1\cdotp+2$, maka dapat kita simpulkan bahwa $p\cdotp+1\cdotp+2$ merupakan bilangan asli kelipatan $3$. Dengan kata lain, $p\cdotp+1\cdotp+2$ habis dibagi $3$. Jadi, jika $p$ merupakan bilangan asli kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi $3$. Kemungkinan Kedua $p-1$ adalah kelipatan $3$. Pada kemungkinan ini, $p-1$ adalah bilangan asli kelipatan $3$. Oleh sebab itu, $p-1 + 3 = p+2$ juga merupakan bilangan asli kelipatan $3$ dong? Ingat! Misi utama kita pada Langkah Pembuktian ke-3 ini adalah membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi dengan $3$. Perhatikan! Karena $p+2$ adalah salah satu faktor dari $p\cdotp+1\cdotp+2$, maka dapat kita simpulkan bahwa $p\cdotp+1\cdotp+2$ merupakan bilangan asli kelipatan $3$. Dengan kata lain, $p\cdotp+1\cdotp+2$ habis dibagi $3$. Jadi, jika $p-1$ merupakan bilangan asli kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi $3$. Kemungkinan Ketiga $p+1$ adalah kelipatan $3$. Pada kemungkinan ini, $p+1$ adalah bilangan asli kelipatan $3$. Ingat! Misi utama kita pada Langkah Pembuktian ke-3 ini adalah membuktikan bahwa $p\cdotp+1\cdotp+2$ habis dibagi dengan $3$. Perhatikan! Karena $p+1$ adalah salah satu faktor dari $p\cdotp+1\cdotp+2$, maka dapat kita simpulkan bahwa $p\cdotp+1\cdotp+2$ merupakan bilangan asli kelipatan $3$. Dengan kata lain, $p\cdotp+1\cdotp+2$ habis dibagi $3$. Jadi, jika $p+1$ merupakan bilangan asli kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi $3$. *** Dari pembuktian panjang di atas, kita dapat menyimpulkan bahwa Jika $p$ adalah kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi dengan $3$. Jika $p-1$ adalah kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi dengan $3$. Jika $p+1$ adalah kelipatan $3$, maka $p\cdotp+1\cdotp+2$ akan habis dibagi dengan $3$. Dengan kata lain Berdasarkan asumsi bahwa $p-1\cdotp\cdotp+1$ habis dibagi dengan $3$, akan berlaku benar bahwa $p\cdotp+1\cdotp+2$ akan habis dibagi dengan $3$. Pernyataan di atas ekuivalen dengan Berdasarkan asumsi bahwa $p^3 - p$ habis dibagi dengan $3$, akan berlaku benar bahwa $p+1^3 - p+1$ akan habis dibagi dengan $3$. Kesimpulan Berdasarkan Langkah Pembuktian ke-1 hingga ke-3, kita dapat menyimpulkan benar bahwa $n^3 - n$ habis dibagi $3$ untuk setiap bilangan asli $n$.
4n 1 habis dibagi 3